Tetrahedron Letters No. 15, pp 1219 - 1222, 1976. Pergamon Press. Printed in Great Britain.

STRUCTURAL REQUIREMENTS IN CHIRAL DIPHOSPHINE-RHODIUM COMPLEXES. II N.M.R. DETERMINATION OF E,Z-GEOMETRY IN PROCHIRAL SUBSTRATES USED IN ASYMMETRIC HYDROGENATION REACTIONS @-ACETAMIDOCINNAMIC ACIDS, ESTERS, AND PARENT AZLACTONES

Robert Glaser and Menachem Twaik

Chemistry Department, Ben Gurion University of the Negev, Beersheva, ISRAEL

(Received in UK 7 January 1976; accepted for publication 1 March 1976)

Summary. Using n.m.r the configuration of the stable 4-benzylidene-2-methyl-2-oxazolin-5-one, substituted derivatives, and the corresponding acids and esters derived from the parent stable azlactones were all found to be of Z-stereochemistry.

Substituted and unsubstituted α -acetamidocinnamic acids have been investigated as prochiral substrates in asymmetric hydrogenation reactions. High optical yields (80-96 % ee) of N-acetyl-phenylalanine and its derivatives have been obtained utilizing homogeneous rhodium complexes containing chiral mono- or diphosphines $^{2-4}$ Yet mechanistic interpretation of these studies is hampered by lack of information regarding the olefinic bond geometry in the α -acetamidocinnamic acid and ester prochiral substrates

The E,Z-geometry of analogous a-benzamidocinnamic acids has been determined by n m.r. studies 5 Thus, the stable isomers of 4-benzylidene-2-phenyl-2-oxazolin-5-one (Ia) and 4-(3',4'-dimethoxybenzylidene)-2-phenyl-2-oxazolin-5-one (Ib) were assigned Z-stereochemistry while the labile azlactones are the corresponding E-isomers. Since solvolysis of the azlactones proceed with retention of configuration, $^{5-9}$ the configurational assignment of the corresponding acids and esters is that of the parent azlactones.

However, the steric and electronic nature of the 2-methyl group in the parent and arylsubstituted 4-benzylidene-2-methyl-2-oxazolin-5-ones (II) differs from that of the 2-phenyl group in analogues I. Therefore, the configurational constraints causing the stable 2-phenyl azlactones (I) to be Z, need not be the same for the 2-methyl azlactones (II)

The stable isomers of the 2-methyl azlactones (II) were all synthesized by known chemical methods. 10-13 Using a modified n.m.r approach based upon the work of Nauta and coworkers, ⁵ we have determined that the stereochemistry of the stable isomers of the 2-methyl azlactones (II) and their solvolysis products is Z also (as in the stable 2-phenyl azlactones (I)). The n.m r spectra of the compounds II-IV are listed in tables 1 and 2.

From table 1 we can see that the stable 2-methyl azlactones (II) all have an H_{β} proton signal at 6 97±0.05 δ. If this signal can be unambiguously assigned as that of the E- or Z-proton for any one of the azlactones in this table, then it is reasonable to assume that the configuration of the other azlactones will also be known

From table 2 the n.m r. spectrum of methyl α -acetamidoacrylate (IIIb) shows two olefinic protons at 6.47 δ and 5.79 δ , compared to the parent methyl acrylate (IIIa) signals of H₁ = 5.82 δ

Ia $R_1 = R_2 = H$ Ib $R_1 = R_2 = OCH_3$ IIa $R_1 = R_2 = H$ IIb $R_1 = OAc$, $R_2 = H$ IIc $R_1 = OAc$, $R_2 = OCH_3$ IId $R_1 = R_2 = OCH_3$ IIe R_1 and $R_2 = OCH_2O$

```
IIIa R_1 = R_2 = R_3 = H IVa R = H

IIIb R_1 = R_2 = H, IVb R = NHCOCH_3

R_3 = NHCOCH_3

IIIc R_1 = p-AcOC_6H_4,

R_2 = H, R_3 = NHCOCH_3

IIId R_1 = H, R_2 = p-AcOC_6H_4,

R_3 = NHCOCH_3

IIIe R_1 = C_6H_5, R_2 = R_3 = H

IIIf R_1 = R_3 = H, R_2 = C_6H_5
```

(trans to COOCH₃ group) and $H_2 = 6.38$ δ (c1s to COOCH₃ group). There are two ways to estimate the effect of an u-acetamido group upon the chemical shift of the H_B protons, H_1 and H_2

METHOD 1 Arbitrarily assign the 6.47 δ and 5 79 δ signals to H₁ and H₂, respectively Thus, when compared to the parent compound IIIa, the α -acetamido group has caused a downfield shift of +0.65 δ to proton H₁ and an upfield shift of -0.59 δ to proton H₂

METHOD 2 Reverse the assignment of the 6 47 δ and 5 79 δ signals so that they are now those of H₂ and H₁, respectively Thus, when compared to the parent compound IIIa, the a-acetamido group has caused an upfield shift of -0.03 δ to proton H₁ and a downfield shift of +0.09 δ to proton H₂.

Comparison of the H(4) signal in coumarin (IVa) and 3-acetamidocoumarin (IVb) shows that the 3-acetamido group causes a downfield shift of +0.88 δ to the cis-proton H(4). Therefore, method 1 seems to provide a more reasonable assessment of the effect of the a-acetamido group upon the cis-proton H₁ and the trans-proton H₂ (cis and trans designation relative to the a-acetamido group in IIIb)

Comparison of the Z- and E-methyl cinnamates (IIIe and IIIf) with that of the parent compound IIIa, shows that the substitution of a phenyl group has resulted in a downfield shift of +1.33 δ and +1.09 δ to the H_g protons in IIIe and IIIf, respectively. Assuming the substituent effects of the p-acetoxyphenyl group to be similar to that of the phenyl group itself, the chemical shifts of the H_g proton in the Z-methyl α -acetamido-p-acetoxycinnamate (IIIc) and in the E-isomer, IIId, can now be estimated.

Table 1	N.M.R.	CHEMICAL SH	HIFTS OF T	HE STAE	LE 2-1	ÆTHYL AZL	ACTONES (II) ^a		
Compd.	шр ^b	н _в	H(2)		H(5)		H(6)	CH3C=N	other
IIa	147-148 ^C	7 02(S)	7 94±0.06	(M)	7.31±	05(M)	7.94±0.06(M)	2.36(S)	-
IIb	136-138 ^d	6.98(5)	7 98(D)		7 05(1))	7 98(D)	2.34(S)	2.26(S)
			(J = 8 5)		(J =)	85)	(J = 8 5)		(CH3CO)
IIc	143-145 ^e	6 95(S)	7.72(D)		6 95 (1	0)	7 38(D of D)	2 33(S)	2.27(S)
			$(J_{2,6} = 2$)	(J _{5,6}	= 8)	$(J_{2,6} = 2)$		(CH ₃ CO)
							$(J_{5,6} = 8)$		3 82(S)
	c								(CH ₃ OPh)
IId	165-166 ¹	6.96(8)	7 77(D)		6 79(1	D)	7 38(D of D)	2,33(S)	3 87(S)
			$(J_{2,6} = 2$)	(J _{5,6}	= 8)	$(J_{2,6} = 2)$		(CH ₃ OPh)
	a						$(J_{5,6} = 8)$		
IIe	178-180 ^g	6 93(S)	7 79(D)		6 74 (D)	7.29(D of D)	2,33(S)	5.95(S)
			$(J_{2,6} = 2$)	(J _{5,6}	= 8)	$(J_{2,6} = 2)$ $(J_{5,6} = 8)$		(0CH ₂ 0)
Table 2	2 NMR.	CHEMICAL SH	HIFTS OF C	ompouni	S III	-IV ^a			
Compd.	mp ^b	н _в		H(2,6))	H(3,5)	NH	CH 3 CON	other
IIIa		582 ^h (R ₁ :	= H)	-		-	-	-	-
		$6 38^{h} (R_2 = H)$							
IIIb ¹	36-38	6 47 (S)		-		-	7.71	2.11(S)	3.79(S)
		579(D) (J	= 1)				(broad S)		(CH ₃ O)
IIIcd ^J	128-129	7.21(S)		7 3 6(I))	6.96(D)	_ ^k	2 00(S)	3.75(S)
				(J = 8	8.5)	(J = 8.5)			(CH ₃ 0)
									2 25(S)
,									(CH ₃ COO)
IIIe		7 71(D) (I	= 16)	-		-	-	-	-
1		/./.(D) (0	•						
IIIf ¹		6 91(D) (J	= 13)	-		-	-	~	-
IIIf ¹ IVa ^m		6 91(D) (J 7.80	= 13)	- -		-	-	-	-

^athe spectra were measured with a Varian XL-100 (CDCl₃, ca 38° C), and the chemical shifts are expressed in δ values (p.p.m) relative to internal Me₄Si, J values are in Hz ^bMelting points (°C) are uncorrected. ^Clit ¹⁰ 148-150°. ^dlit ¹¹ 138-139° ^elit.¹² 144-148°. ^flit ¹³ 167°. ^glit.¹³ 181°. ^hVarian spectra catalogue, spectrum No 64 ⁱsynthesised by reaction of CH₂N₂ with a-acetamidoacrylic acid ^jdata for the stable ester (synthesized by reaction of CH₂N₂ with a-acetamido-p-acetoxycinnamic acid (mp 233-235 dec) obtained by neutral hydrolysis of the stable azlactone IIb ^ksignal buried under those of aromatic protons ^lref. 8 ^mref. 14. ⁿref 15 The chemical shifts of the H₁ (6 47 δ) and H₂ (5 79 δ) protons in methyl a-acetamidoacrylate (IIIb) can be added to the substituent effects of the p-acetoxyphenyl group upon H₁ (+1.09 δ) and H₂ (+1 33 δ), respectively Therefore, the chemical shift of the H_β proton in the Z-isomer IIIc is estimated to be 7.12 δ , while that in the E-isomer IIId is estimated to be 7 56 δ The value of 7 21 δ found for the stable methyl a-acetamido-p-acetoxycinnamate (mp 128-129^oC) is close ($\Delta\delta = 0$ 09) to the estimated value of the H_β proton (7.12 δ) expected in the Z-isomer IIIc

A singlet at 7 21 δ is also found in the n m r spectrum of the stable methyl α -acetamido-3'-methoxy-4'-acetoxycinnamate (mp 173 5-175°C), but it cannot be unequivocally assigned due to multiplets for the H(2) and H(6) protons

Method 1 shows the α -acetamido group to cause an upfield shift of -0.59 δ upon the trans (H₂) proton in methyl α -acetamidoacrylate (IIIb). This is consistent with the n m.r data of 2-methyl cinnamate (IIIe) The H_β proton in the 2-isomer IIIc is moved by the α -acetamido group upfield (-0 50 δ) relative to the H_β proton in Z-methyl cinnamate (IIIe)

Moreover, the larger downfield effect of +0 98 δ of an α -benzamido group upon the proton cis to it in methyl α -benzamidoacrylate,⁵ relative to that of +0 65 δ for an α -acetamido group, is is also consistent with the assignment Furthermore, use of this method predicts the H_{β} protons to be at 7 34 δ and 7.89 δ and Z- and E-methyl α -benzamido-3',4'-dimethoxycinnamates, respectively, compared to the experimentally determined values of 7 44 δ and 8 00 δ ⁵

Since the stereochemistry of the stable IIIc ester is now assigned as Z, the configuration of the parent azlactone IIb and the others (IIa-e) may also be considered to be Z

Finally, the n.m.r assignment of Z-stereochemistry to the stable azlactone isomer IIb is further strengthened by the x-ray analysis of the 199°C mp isomer of α -benzamidocinnamic acid ⁹ This isomer (obtained by hydrolysis of the stable 2-phenyl azlactone Ia, mp 165-166°C) was assigned the Z-configuration by n m r.,⁵ and this subsequently was confirmed by x-ray analysis.⁹

REFERENCES

- 1. For part I see R. Glaser, Tetrahedron Lett., 2127 (1975).
- 2 W.S. Knowles, M.J. Sabacky, B.D. Vineyard, and D.J. Weinkauft, J Amer. Chem Soc., <u>97</u>, 2567 (1975), and references therein
- 3 T P. Dang, J.C. Poulin, and H.B. Kagan, J. Organometal. Chem., 91, 105 (1975)
- 4 A Levi, G. Modena, and G. Scorrano, J C S. Chem Commun, 6 (1975)
- 5. A.P Morgenstern, C Schutij, and W Th Nauta, Chem Commun., 321 (1969).
- 6. H.E Carter and W C. Risser, J. Biol. Chem., 139, 255 (1941)
- 7. R. Filler, Adv. Heterocyclic Chem., 4, 75 (1965).
- 8 K. Brocklehurst, H.S. Price, and K. Williamson, Chem. Commun., 884 (1968).
- 9. K. Brocklehurst, R P Bywater, R.A. Palmer, and R. Patrick, <u>1bid</u>, 632 (1968).
- 10. R.M Herbst and D. Shemin, "Organic Syntheses", Col Vol. II, Wiley, New York, 1943, p. 1.
- 11. H.D. Dakin, J. Biol Chem , 82, 439 (1932)
- 12. K.N.F. Shaw, A. McMillan, and M D. Armstrong, J Org. Chem., 23, 27 (1958).
- 13. J. Niederl and A. Ziering, J. Amer. Chem. Soc., 64, 885 (1942).
- 14. T J Batterham and J A Lamberton, Austral. J. Chem., 17, 1305 (1964).
- 15. R.F C Brown, L. Radom, S. Sternhell, and I.D. Rae, Can. J Chem., 46, 2577 (1968).